3.5.17 \(\int \frac {\sqrt {d+e x}}{(b x+c x^2)^{3/2}} \, dx\) [417]

3.5.17.1 Optimal result
3.5.17.2 Mathematica [C] (verified)
3.5.17.3 Rubi [A] (verified)
3.5.17.4 Maple [A] (verified)
3.5.17.5 Fricas [C] (verification not implemented)
3.5.17.6 Sympy [F]
3.5.17.7 Maxima [F]
3.5.17.8 Giac [F]
3.5.17.9 Mupad [F(-1)]

3.5.17.1 Optimal result

Integrand size = 23, antiderivative size = 231 \[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=-\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}+\frac {4 \sqrt {c} \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {d+e x} E\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{(-b)^{3/2} \sqrt {1+\frac {e x}{d}} \sqrt {b x+c x^2}}-\frac {2 (2 c d-b e) \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right ),\frac {b e}{c d}\right )}{(-b)^{3/2} \sqrt {c} \sqrt {d+e x} \sqrt {b x+c x^2}} \]

output
-2*(2*c*x+b)*(e*x+d)^(1/2)/b^2/(c*x^2+b*x)^(1/2)+4*EllipticE(c^(1/2)*x^(1/ 
2)/(-b)^(1/2),(b*e/c/d)^(1/2))*c^(1/2)*x^(1/2)*(1+c*x/b)^(1/2)*(e*x+d)^(1/ 
2)/(-b)^(3/2)/(1+e*x/d)^(1/2)/(c*x^2+b*x)^(1/2)-2*(-b*e+2*c*d)*EllipticF(c 
^(1/2)*x^(1/2)/(-b)^(1/2),(b*e/c/d)^(1/2))*x^(1/2)*(1+c*x/b)^(1/2)*(1+e*x/ 
d)^(1/2)/(-b)^(3/2)/c^(1/2)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2)
 
3.5.17.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.19 (sec) , antiderivative size = 186, normalized size of antiderivative = 0.81 \[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=\frac {2 \sqrt {\frac {b}{c}} (d+e x)+4 i e \sqrt {1+\frac {b}{c x}} \sqrt {1+\frac {d}{e x}} x^{3/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {b}{c}}}{\sqrt {x}}\right )|\frac {c d}{b e}\right )-2 i e \sqrt {1+\frac {b}{c x}} \sqrt {1+\frac {d}{e x}} x^{3/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {b}{c}}}{\sqrt {x}}\right ),\frac {c d}{b e}\right )}{b \sqrt {\frac {b}{c}} \sqrt {x (b+c x)} \sqrt {d+e x}} \]

input
Integrate[Sqrt[d + e*x]/(b*x + c*x^2)^(3/2),x]
 
output
(2*Sqrt[b/c]*(d + e*x) + (4*I)*e*Sqrt[1 + b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/ 
2)*EllipticE[I*ArcSinh[Sqrt[b/c]/Sqrt[x]], (c*d)/(b*e)] - (2*I)*e*Sqrt[1 + 
 b/(c*x)]*Sqrt[1 + d/(e*x)]*x^(3/2)*EllipticF[I*ArcSinh[Sqrt[b/c]/Sqrt[x]] 
, (c*d)/(b*e)])/(b*Sqrt[b/c]*Sqrt[x*(b + c*x)]*Sqrt[d + e*x])
 
3.5.17.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.05, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {1163, 27, 1269, 1169, 122, 120, 127, 126}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1163

\(\displaystyle \frac {2 \int \frac {e (b+2 c x)}{2 \sqrt {d+e x} \sqrt {c x^2+b x}}dx}{b^2}-\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e \int \frac {b+2 c x}{\sqrt {d+e x} \sqrt {c x^2+b x}}dx}{b^2}-\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}\)

\(\Big \downarrow \) 1269

\(\displaystyle \frac {e \left (\frac {2 c \int \frac {\sqrt {d+e x}}{\sqrt {c x^2+b x}}dx}{e}-\frac {(2 c d-b e) \int \frac {1}{\sqrt {d+e x} \sqrt {c x^2+b x}}dx}{e}\right )}{b^2}-\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}\)

\(\Big \downarrow \) 1169

\(\displaystyle \frac {e \left (\frac {2 c \sqrt {x} \sqrt {b+c x} \int \frac {\sqrt {d+e x}}{\sqrt {x} \sqrt {b+c x}}dx}{e \sqrt {b x+c x^2}}-\frac {\sqrt {x} \sqrt {b+c x} (2 c d-b e) \int \frac {1}{\sqrt {x} \sqrt {b+c x} \sqrt {d+e x}}dx}{e \sqrt {b x+c x^2}}\right )}{b^2}-\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}\)

\(\Big \downarrow \) 122

\(\displaystyle \frac {e \left (\frac {2 c \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {d+e x} \int \frac {\sqrt {\frac {e x}{d}+1}}{\sqrt {x} \sqrt {\frac {c x}{b}+1}}dx}{e \sqrt {b x+c x^2} \sqrt {\frac {e x}{d}+1}}-\frac {\sqrt {x} \sqrt {b+c x} (2 c d-b e) \int \frac {1}{\sqrt {x} \sqrt {b+c x} \sqrt {d+e x}}dx}{e \sqrt {b x+c x^2}}\right )}{b^2}-\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}\)

\(\Big \downarrow \) 120

\(\displaystyle \frac {e \left (\frac {4 \sqrt {-b} \sqrt {c} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {d+e x} E\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{e \sqrt {b x+c x^2} \sqrt {\frac {e x}{d}+1}}-\frac {\sqrt {x} \sqrt {b+c x} (2 c d-b e) \int \frac {1}{\sqrt {x} \sqrt {b+c x} \sqrt {d+e x}}dx}{e \sqrt {b x+c x^2}}\right )}{b^2}-\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}\)

\(\Big \downarrow \) 127

\(\displaystyle \frac {e \left (\frac {4 \sqrt {-b} \sqrt {c} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {d+e x} E\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{e \sqrt {b x+c x^2} \sqrt {\frac {e x}{d}+1}}-\frac {\sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {\frac {e x}{d}+1} (2 c d-b e) \int \frac {1}{\sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {\frac {e x}{d}+1}}dx}{e \sqrt {b x+c x^2} \sqrt {d+e x}}\right )}{b^2}-\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}\)

\(\Big \downarrow \) 126

\(\displaystyle \frac {e \left (\frac {4 \sqrt {-b} \sqrt {c} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {d+e x} E\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{e \sqrt {b x+c x^2} \sqrt {\frac {e x}{d}+1}}-\frac {2 \sqrt {-b} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {\frac {e x}{d}+1} (2 c d-b e) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right ),\frac {b e}{c d}\right )}{\sqrt {c} e \sqrt {b x+c x^2} \sqrt {d+e x}}\right )}{b^2}-\frac {2 (b+2 c x) \sqrt {d+e x}}{b^2 \sqrt {b x+c x^2}}\)

input
Int[Sqrt[d + e*x]/(b*x + c*x^2)^(3/2),x]
 
output
(-2*(b + 2*c*x)*Sqrt[d + e*x])/(b^2*Sqrt[b*x + c*x^2]) + (e*((4*Sqrt[-b]*S 
qrt[c]*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[d + e*x]*EllipticE[ArcSin[(Sqrt[c]*S 
qrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(e*Sqrt[1 + (e*x)/d]*Sqrt[b*x + c*x^2]) - 
 (2*Sqrt[-b]*(2*c*d - b*e)*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1 + (e*x)/d]*Ell 
ipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c*d)])/(Sqrt[c]*e*Sqrt[d 
 + e*x]*Sqrt[b*x + c*x^2])))/b^2
 

3.5.17.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 120
Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_] 
 :> Simp[2*(Sqrt[e]/b)*Rt[-b/d, 2]*EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[- 
b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[c, 0] && Gt 
Q[e, 0] &&  !LtQ[-b/d, 0]
 

rule 122
Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_] 
 :> Simp[Sqrt[e + f*x]*(Sqrt[1 + d*(x/c)]/(Sqrt[c + d*x]*Sqrt[1 + f*(x/e)]) 
)   Int[Sqrt[1 + f*(x/e)]/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]), x], x] /; FreeQ[{b 
, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])
 

rule 126
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x 
_] :> Simp[(2/(b*Sqrt[e]))*Rt[-b/d, 2]*EllipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]* 
Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[c, 0] & 
& GtQ[e, 0] && (PosQ[-b/d] || NegQ[-b/f])
 

rule 127
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x 
_] :> Simp[Sqrt[1 + d*(x/c)]*(Sqrt[1 + f*(x/e)]/(Sqrt[c + d*x]*Sqrt[e + f*x 
]))   Int[1/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]*Sqrt[1 + f*(x/e)]), x], x] /; Free 
Q[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])
 

rule 1163
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^m*(b + 2*c*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)* 
(b^2 - 4*a*c))), x] - Simp[1/((p + 1)*(b^2 - 4*a*c))   Int[(d + e*x)^(m - 1 
)*(b*e*m + 2*c*d*(2*p + 3) + 2*c*e*(m + 2*p + 3)*x)*(a + b*x + c*x^2)^(p + 
1), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[p, -1] && GtQ[m, 0] && (LtQ[ 
m, 1] || (ILtQ[m + 2*p + 3, 0] && NeQ[m, 2])) && IntQuadraticQ[a, b, c, d, 
e, m, p, x]
 

rule 1169
Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> 
 Simp[Sqrt[x]*(Sqrt[b + c*x]/Sqrt[b*x + c*x^2])   Int[(d + e*x)^m/(Sqrt[x]* 
Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] && Eq 
Q[m^2, 1/4]
 

rule 1269
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + b*x + 
 c*x^2)^p, x], x] + Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + b*x + c*x^2)^ 
p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 
3.5.17.4 Maple [A] (verified)

Time = 2.00 (sec) , antiderivative size = 352, normalized size of antiderivative = 1.52

method result size
default \(\frac {2 \left (\sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {c \left (e x +d \right )}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, F\left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b^{2} e -2 \sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {c \left (e x +d \right )}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, F\left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b c d -2 \sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {c \left (e x +d \right )}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, E\left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b^{2} e +2 \sqrt {\frac {c x +b}{b}}\, \sqrt {-\frac {c \left (e x +d \right )}{b e -c d}}\, \sqrt {-\frac {c x}{b}}\, E\left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right ) b c d -2 c^{2} e \,x^{2}-b c e x -2 c^{2} d x -b c d \right ) \sqrt {x \left (c x +b \right )}}{x \left (c x +b \right ) b^{2} c \sqrt {e x +d}}\) \(352\)
elliptic \(\frac {\sqrt {x \left (e x +d \right ) \left (c x +b \right )}\, \left (-\frac {2 \left (c e \,x^{2}+b e x +c d x +b d \right )}{b^{2} \sqrt {x \left (c e \,x^{2}+b e x +c d x +b d \right )}}-\frac {2 \left (c e \,x^{2}+c d x \right )}{b^{2} \sqrt {\left (\frac {b}{c}+x \right ) \left (c e \,x^{2}+c d x \right )}}+\frac {2 \left (\frac {b e -c d}{b^{2}}+\frac {c d}{b^{2}}\right ) b \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, F\left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{c \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+b d x}}+\frac {4 e \sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}\, \sqrt {\frac {x +\frac {d}{e}}{-\frac {b}{c}+\frac {d}{e}}}\, \sqrt {-\frac {c x}{b}}\, \left (\left (-\frac {b}{c}+\frac {d}{e}\right ) E\left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )-\frac {d F\left (\sqrt {\frac {\left (\frac {b}{c}+x \right ) c}{b}}, \sqrt {-\frac {b}{c \left (-\frac {b}{c}+\frac {d}{e}\right )}}\right )}{e}\right )}{b \sqrt {c e \,x^{3}+b e \,x^{2}+c d \,x^{2}+b d x}}\right )}{\sqrt {x \left (c x +b \right )}\, \sqrt {e x +d}}\) \(421\)

input
int((e*x+d)^(1/2)/(c*x^2+b*x)^(3/2),x,method=_RETURNVERBOSE)
 
output
2*(((c*x+b)/b)^(1/2)*(-c*(e*x+d)/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticF 
(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^2*e-2*((c*x+b)/b)^(1/2)*(-c*(e 
*x+d)/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticF(((c*x+b)/b)^(1/2),(b*e/(b* 
e-c*d))^(1/2))*b*c*d-2*((c*x+b)/b)^(1/2)*(-c*(e*x+d)/(b*e-c*d))^(1/2)*(-c* 
x/b)^(1/2)*EllipticE(((c*x+b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b^2*e+2*((c* 
x+b)/b)^(1/2)*(-c*(e*x+d)/(b*e-c*d))^(1/2)*(-c*x/b)^(1/2)*EllipticE(((c*x+ 
b)/b)^(1/2),(b*e/(b*e-c*d))^(1/2))*b*c*d-2*c^2*e*x^2-b*c*e*x-2*c^2*d*x-b*c 
*d)/x*(x*(c*x+b))^(1/2)/(c*x+b)/b^2/c/(e*x+d)^(1/2)
 
3.5.17.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 379, normalized size of antiderivative = 1.64 \[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=-\frac {2 \, {\left ({\left ({\left (2 \, c^{2} d - b c e\right )} x^{2} + {\left (2 \, b c d - b^{2} e\right )} x\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right ) + 6 \, {\left (c^{2} e x^{2} + b c e x\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )}}{27 \, c^{3} e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + b^{2} e^{2}\right )}}{3 \, c^{2} e^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, b^{2} c d e^{2} + 2 \, b^{3} e^{3}\right )}}{27 \, c^{3} e^{3}}, \frac {3 \, c e x + c d + b e}{3 \, c e}\right )\right ) + 3 \, {\left (2 \, c^{2} e x + b c e\right )} \sqrt {c x^{2} + b x} \sqrt {e x + d}\right )}}{3 \, {\left (b^{2} c^{2} e x^{2} + b^{3} c e x\right )}} \]

input
integrate((e*x+d)^(1/2)/(c*x^2+b*x)^(3/2),x, algorithm="fricas")
 
output
-2/3*(((2*c^2*d - b*c*e)*x^2 + (2*b*c*d - b^2*e)*x)*sqrt(c*e)*weierstrassP 
Inverse(4/3*(c^2*d^2 - b*c*d*e + b^2*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3* 
b*c^2*d^2*e - 3*b^2*c*d*e^2 + 2*b^3*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c*d + b 
*e)/(c*e)) + 6*(c^2*e*x^2 + b*c*e*x)*sqrt(c*e)*weierstrassZeta(4/3*(c^2*d^ 
2 - b*c*d*e + b^2*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2 
*c*d*e^2 + 2*b^3*e^3)/(c^3*e^3), weierstrassPInverse(4/3*(c^2*d^2 - b*c*d* 
e + b^2*e^2)/(c^2*e^2), -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*b^2*c*d*e^2 + 
 2*b^3*e^3)/(c^3*e^3), 1/3*(3*c*e*x + c*d + b*e)/(c*e))) + 3*(2*c^2*e*x + 
b*c*e)*sqrt(c*x^2 + b*x)*sqrt(e*x + d))/(b^2*c^2*e*x^2 + b^3*c*e*x)
 
3.5.17.6 Sympy [F]

\[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {d + e x}}{\left (x \left (b + c x\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate((e*x+d)**(1/2)/(c*x**2+b*x)**(3/2),x)
 
output
Integral(sqrt(d + e*x)/(x*(b + c*x))**(3/2), x)
 
3.5.17.7 Maxima [F]

\[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {e x + d}}{{\left (c x^{2} + b x\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((e*x+d)^(1/2)/(c*x^2+b*x)^(3/2),x, algorithm="maxima")
 
output
integrate(sqrt(e*x + d)/(c*x^2 + b*x)^(3/2), x)
 
3.5.17.8 Giac [F]

\[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=\int { \frac {\sqrt {e x + d}}{{\left (c x^{2} + b x\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((e*x+d)^(1/2)/(c*x^2+b*x)^(3/2),x, algorithm="giac")
 
output
integrate(sqrt(e*x + d)/(c*x^2 + b*x)^(3/2), x)
 
3.5.17.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x}}{\left (b x+c x^2\right )^{3/2}} \, dx=\int \frac {\sqrt {d+e\,x}}{{\left (c\,x^2+b\,x\right )}^{3/2}} \,d x \]

input
int((d + e*x)^(1/2)/(b*x + c*x^2)^(3/2),x)
 
output
int((d + e*x)^(1/2)/(b*x + c*x^2)^(3/2), x)